THE FUTURE OF CANCER CARE IN THE ELDERLY PATIENT: Personalized Therapy and Targeted Agents Hold Promise

Ramesh K. Ramanathan, MD
Professor of Medicine, Mayo Clinic College of Medicine & Director, GI Medical Oncology, Mayo Clinic Arizona

Learning Objectives:
- Review cancer statistics in the elderly population
- Describe current treatment of common cancers in the elderly population and new targeted agents
- Explain reasons for toxicity of cancer treatments and strategies to improve outcomes

DISCLOSURE OF COMMERCIAL SUPPORT
Ramesh K. Ramanathan, MD has a significant financial interest or other relationship with manufacturer(s) of commercial product(s) and /or provider(s) of commercial services discussed in this presentation.
Consultant for Ceurlean and Pharmacyclics
Research grants from AbbVie, Celgene, Merrimack, Plexxicon and Tahio
The Future of Cancer Care in the Elderly Patient: Personalized Therapy and Targeted Agents Hold Promise

Ramesh K. Ramanathan MD
Professor of Medicine
Mayo Clinic College of Medicine
Division of Hematology/Oncology
Mayo Clinic, AZ

DISCLOSURE
Research Grants
Merrimack, Celgene, AbbVie, Plexxicon, Tahio, Bayer, Biomarin

Honoraria
Pharmacytics, Cerulean

Off Label Usage
Will discuss investigational agents in clinical trials

Presentation Objectives
• Review cancer statistics in the elderly population
• Explain reasons for toxicity of cancer treatments and strategies to improve outcomes
• Describe current treatment of common cancers in the elderly population and new targeted agents
Cancer Statistics In the Elderly

- An aging population
 - 1970: 9.8% > 65 yrs
 - 2010: 13.0% > 65 yrs
 - 2030: 20.0% > 65 yrs (70 million)
- Diagnosis of common cancers is median of 68-74 yrs and median age at death is 70 – 79 yrs.
- Death rates are disproportionally higher in the elderly
- The cost of cancer care in elderly patients is significant, especially with the advent of new targeted agents.
 - Medicare cancer payments about 150 billion in 2010
 - Increasing costs passed to the patient

Why Cancer Develops as We Get Older?

- Longer duration of carcinogenic exposure and susceptibility of aging cells
- Decreased ability to repair DNA
- Oncogene activation and/or decrease in tumor suppressor gene activity
- Telomere shortening and genetic instability
- Microenvironment alterations: increase in IL-6 “the geriatric cytokine”.
- Decreased immune surveillance

How to Assess Suitability/Tolerance for Cancer Therapy?

- Comprehensive Geriatric Assessment
 - Scale developed by Hurria et al. Mostly self reported items, takes about 22 min and 87% can complete without assistance

- Phenotype model
 - Unintentional weight loss, self reported exhaustion, Low energy expenditure, slow gait speed and weak grip strength.
 - Frail: 3/5 factors (7 yr sur 12%)
 - Pre Frail: 1-2 factors (7 yr sur 23%)
 - Not frail: (7 yr survival 43%)

Oncologists Assessment of Activity

<table>
<thead>
<tr>
<th>Karnofsky Status</th>
<th>Karnofsky Grade</th>
<th>ECOG Grade</th>
<th>ECOG Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal, no complaints</td>
<td>100</td>
<td>0</td>
<td>Fully active, able to carry on all pre-disease performance without restriction</td>
</tr>
<tr>
<td>Able to carry on normal activities</td>
<td>80</td>
<td>1</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out light work</td>
</tr>
<tr>
<td>Normal activity with effort</td>
<td>60</td>
<td>1</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out light work</td>
</tr>
<tr>
<td>Care for self. Unable to carry on normal activity or to do active work</td>
<td>70</td>
<td>2</td>
<td>Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about 50% of waking hours</td>
</tr>
<tr>
<td>Require occasional assistance, but able to care for most of his needs</td>
<td>60</td>
<td>2</td>
<td>Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about 50% of waking hours</td>
</tr>
<tr>
<td>Require considerable assistance and frequent medical care</td>
<td>50</td>
<td>3</td>
<td>Capable of only limited self-care, confined to bed or chair more than 50% of waking hours</td>
</tr>
<tr>
<td>Disabled. Requires special care and assistance</td>
<td>40</td>
<td>3</td>
<td>Capable of only limited self-care, confined to bed or chair more than 53% of waking hours</td>
</tr>
<tr>
<td>Severely disabled. Hospitalization indicated through death non-imminent</td>
<td>30</td>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair</td>
</tr>
<tr>
<td>Very sick. Hospitalization necessary</td>
<td>20</td>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair</td>
</tr>
<tr>
<td>Moribund</td>
<td>10</td>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair</td>
</tr>
<tr>
<td>Dead</td>
<td>0</td>
<td>5</td>
<td>Dead</td>
</tr>
</tbody>
</table>

Catgorize patients with CGA

- Group 1: Functionally independent, no serious comorbidity, standard cancer treatment
- Group 2: Partially dependent, <3 comorbid conditions, limited usual treatment
- Group 3: Dependent, ≥4 comorbid conditions, any geriatric syndrome, palliative treatment
Systemic Chemotherapy and Targeted Agents—How to Dose Patients?

- Inadequate data from clinical trials, thus extrapolate from a younger population.
- Barriers to enrollment:
 - Stringent eligibility criteria (trials now have an average of 49 criteria, travel, expense, caregiver etc).
- Review of 28,000 patients in 55 trials from 1995-2002:
 - Only 36% of trial participants ≥ 65 yrs, (compared with 60% of the population).
 - 9% of trial participants were ≥ 75 yrs, (compared with 31% population).

Age Related Physiologic Changes

- Surgery, radiation and drug therapy affected by decreased functional reserve in every organ.
- Sarcopenia—Loss of strength and muscle
- Changes in skin
- Decreased GI absorption and motility
- Decreased kidney function
- Decreased CNS activity and neuronal loss
- Changes in immune system
- Bone marrow compromise

Dose Adjustment by Age for Cancer Patients

- Current guidelines recommend standard doses during first cycle of chemotherapy for “fit patients” based on chronologic age.
- Patients in practice not the same as in clinical trials.
- Polypharmacy increases the risk of side effects and interactions with the p450 system
 - 234 patients, median age 80 yrs
 - # medications 9.2 (prescription 6.1)
 - 43% took > 10 meds
 - 75% had potential interactions in cycle 1

Nightingale G et al. JCO, 2015:1453-1459
Decision Making

- Adjuvant setting (therapy increases "cure rate" by 10-20%)
 - Patient has had a potentially curative surgery and has recovered.
 - What is chronological age and life expectancy?
 - Perform a CGA and therapy if life expectancy > 7-10 years.
- Metastatic Setting
 - Goal is to increase life expectancy (usually months not years) with QOL.

Breast Cancer in the Elderly

- 50% develop in women > 65 yrs and 13% >80 yrs.
- More favorable status (ER/PR and Her2/neu +) but women > 75 yrs have a worse outcome.
- Hormonal therapy more likely to be used than systemic chemotherapy
- Targeted agents everolimus, trazatuzumab and pertuzumab better tolerated.

Colorectal Cancer

- Median Age is 71 yrs, more likely to present on the right side with anemia.
- Consider palliative colectomy early to prevent obstruction
- Adjuvant therapy is of benefit but elderly less likely to be offered, 30% discontinue prematurely
 - 5 FU remains standard, addition of oxaliplatin (FOLFOX) questionable benefit.
- Targeted agents can be considered (VEGFR and EFGFR agents)

Lung Cancer

- Median Age is 70 yrs
- Radiation therapy (SBRT) is a viable option for patients who are medically unfit for surgery
- Chemotherapy has the same benefit in elderly fit patients as younger patients
- Check for EGFR mutations (seen in 25-30% of non smokers, women, Asian) and ALK/ROS translocations
 - EGFR oral agents (erlotinib, afatanib) have impressive single agent activity.

Acute Myeloid leukemia

- Median age is 68 yrs and more aggressive in the elderly
- Elderly have more underlying myelodysplastic syndrome
- Standard induction therapy (7+3 regimen) has 10-14% (30 day) mortality in fit patients aged 55-80 yrs
- Bone marrow transplant contradicted.
- Targeted agents increasingly used in the elderly
 - CD33 antibody (Gemtuzumab)
 - Hypomethylating agents (azacitidine)

Multiple Myeloma

- Median Age is 70 with 37% > 75 yrs.
- Standard therapy of melphalan/predisione and thalidomide is toxic
- Newer agents such as lenalidomide and pomalidomide are better tolerated.
- Second generation proteosome inhibitor carfilzomib better tolerated in the elderly.

Why we Need Precision Therapy: One Size Does Not Fit All

<table>
<thead>
<tr>
<th>Agent</th>
<th>Effective in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-depressants (SSRIs)</td>
<td>60-65%</td>
</tr>
<tr>
<td>Asthma Drugs</td>
<td>60-65%</td>
</tr>
<tr>
<td>Diabetes Drugs</td>
<td>40-50%</td>
</tr>
<tr>
<td>Arthritis Drugs</td>
<td>50%</td>
</tr>
<tr>
<td>Alzheimer's Drugs</td>
<td>30-35%</td>
</tr>
<tr>
<td>Cancer</td>
<td>20-25%</td>
</tr>
</tbody>
</table>

Personalized Therapies in Cancer

- Steroid receptors: ER+ breast cancer,
- HER2: Breast and gastric cancer
- KRAS: Colon cancer
- EGFR & ALK/ROS for NSCLC
- CD20: Lymphoma
- BCR/Abl: CML
- c-Kit: GIST
- Hedgehog: Basal cell & medulloblastoma
- RET: Medullary thyroid cancer
- B-RAF: Melanoma

The Gold Standard for Targeted Therapy

- Imatinib: Took 3 years. FDA approval in 2001 for treatment of CML
- CML: Incurable disease prior to 2001 Rx with IFN and bone marrow transplant highly toxic
- In phase III trial: OS 88% at 6 years and 95% when CML-related deaths were considered. 66% still receiving drug.
- Annual sales $5 billion/year

Visualization Of Complete Genome By Circos Map

Circos map legend:
- Coverage
- All De Novo changes
- Copy tics
- Somatic synonymous
- Orange tics
- Somatic non synonymous
- Red tics
- Somatic copy number
- Deletion

Actionable Signalling Pathways in Common Solid Tumors

Vascular Endothelial Growth Factor (VEGF) family.

Alvarez RH et al. JCO 2010;28:3366-3379

The information in this document may not be reproduced or disclosed to unauthorized parties without the prior consent of the Arizona Geriatrics Society.
2015 Arizona Geriatrics Society All Rights Reserved
VEGF Inhibitors in Practice

- No Biomarker used in practice
- VEGF Antibodies (Given IV).
- Arterial TE events increased > 65 yrs
 - Ramucirumab: Gastric and colon
 - Aflibercept: colon

VEGF Inhibitors in Practice

- No Biomarker used in practice
- VEGF small molecules (oral agents). Multi-targeted agents. Metabolized by P450 system
- Side effects: GI, rash, HTN, fatigue
 - Sorafenib: HCC, kidney cancer
 - Sunitinib and everolimus: kidney cancer and pancreatic neuroendocrine tumors
 - Axitinib and Pazopanib for kidney cancer

Epidermal Growth Factor Receptor (EGFR) family.

Ricardo H. Alvarez et al. JCO 2010;28:3366-3379
EGFR (EGFR1) Inhibitors

- **EGFR Antibodies:** Generally safe in the elderly
- **Side effects:** Allergic reactions (cetuximab) and skin toxicity, hypomagnesaemia
- **Not effective in lung or other cancers.**
 - Cetuximab: Colon (Ras wild type only) and advanced H & N cancer
 - Panitumumab: Colon cancer (Ras wild type only)

EGFR (EGFR1) Inhibitors

- **EGFR small Molecules:** metabolized by P450 system
- **Side effects:** rash and pneumonitis
- **Not effective in colon cancer
- **EGFR mutations:** about 2-3% of all lung cancers, higher in non smokers, women and Asians (upto 30-35%)
 - Afatinib: Lung cancer with EGFR mutations
 - Erlotinib: lung cancer with EGFR mutations, pancreas and refractory lung cancer

Wood SL et al. Cancer Treat Rev. 2015 41:361-75

Epidermal Growth Factor Receptor (EGFR) family.

Ricardo H. Alvarez et al. JCO 2010;28:3366-3379
EGFR2 or HER2/neu Inhibitors

- Use only in Her2/neu amplified (IHC or FISH) tumors. About 25% of breast and gastric cancers
- HER2 neu, small molecule
- Lapatinib: breast cancer
- Her2/neu Antibodies (IV agents)
 - Side effects: CHF risk increased in the elderly
 - Trastuzumab: Adjuvant and metastatic breast cancer. Gastric cancer
 - TDM1 and pertuzumab: Breast cancer
 - Trastuzumab and pertuzumab: Neoadjuvant and metastatic breast cancer

The Programmed Cell Death Protein 1 (PD-1) Immunologic Checkpoint.

Postow MA et al. JCO 2015;33:1974-1982

Immune Modulators-PD 1 inhibitors

- "Changing the landscape of Cancer"
- Side effects: "Generally safe in the elderly". Rash, diarrhea, pruritus, fatigue and rare cases of pneumonitis
 - LFTs, endocrine function and respiratory status should be closely monitored.
- Remarkable durable responses in multiple tumor types in refractory patients
 - Pembrolizumab (9/2014): Advanced melanoma
 - Nivolumab: Melanoma and lung cancer

http://mycancergenome.org/content/drug-class/pd-1-inhibition-and-inhibitor
Nature Biotechnology 32, 847–848 (2014)
A Lot More Work to be done

- What are the druggable genes? Most are passenger mutations.
- The most common mutation in cancer is p53. In 40 years of research unable to target P53.
- Targeted therapy often leads to short-lived responses, impact on survival?
- Redundant Pathways: Targeting one pathway is not enough.
- Accuracy: 70% are true positive & true negative.
- Reimbursement, Ethics, & drug approval process.
- Costs associated with gene sequencing: The $1000 genome? But storage and interpretation >$ 30,000.

Molecular Screening and Targeted Therapy

- The goal is to rapidly bring new effective agents to market that significantly improve outcome for patients
- Resistance seen to 1st generation agents, design superior drugs based on mechanisms of resistance
- Efforts ongoing mainly in Academia, but > 80% of patients seen in community
- A broad based screening program possible-SAFIR program in France

Lancet Oncol. 15: 267: 2014

Now We Have Financial Toxicity!!

Monthly and Median Costs of Cancer Drugs at the Time of FDA Approval 1956 - 2015

- [Graph showing the increase in cost of cancer drugs over time]

Source: Peter S. Bach, MD, Memorial Sloan-Kettering Cancer Center
About 100-150 New Agents in Clinical Development- >700 Active Phase I Trials

Garraway L A JCO. 31:1806-1814: 2013

Precision Medicine

How do we get the right drug to the right patient?

Mayo-TGen Platform for Genomic Medicine

Key Points

• Elderly patients have a high cancer burden
• Do not withhold standard therapy to the elderly, but first do comprehensive assessment (CGA etc)
• Chemotherapy for advanced metastatic cancer, especially 3rd line and beyond has little benefit
• Poly pharmacy a hazard, limit drugs
• We are moving away from cytotoxic therapy
• Ask about clinical trials for your patients
Q & A

The information in this document may not be reproduced or disclosed to unauthorized parties without the prior consent of the Arizona Geriatrics Society.
2015 Arizona Geriatrics Society All Rights Reserved